Protein-Ligand Docking

Matthias Rarey

GMD - German National Research Center for Information Technology
Institute for Algorithms and Scientific Computing (SCAI)
53754 Sankt Augustin, Germany

rarey@gmd.de
Outline of this lecture

- **Introduction**
 - The docking problem
 - Applications
 - Scoring functions
- **Rigid-body protein-ligand docking**
 - Clique-search-based methods
 - The CLIX approach
 - Geometric-hashing-based methods
- **Flexible protein-ligand docking**
 - Docking by simulation
 - Incremental construction algorithms
 - Genetic algorithms
- **Protein-protein docking**
 - next lecture by T. Lengauer
Introduction

- The molecular docking problem:
 - Given two molecules with 3D conformations in atomic detail
 - Do the molecules bind to each other? If yes:
 - How strong is the binding affinity?
 - How does the molecule-molecule complex look like?

- Docking problems in biochemistry:
 - Protein-Ligand docking
 - rigid-body docking
 - flexible docking
 - Protein-Protein docking
 - Protein-DNA docking
 - DNA-Ligand docking
Some basic principles...

- The association of molecules is based on interactions:
 - hydrogen bonds, salt bridges, hydrophobic contacts
 - electrostatics
 - very strong repulsive interactions (van der Waals) on short distances

- The associative interactions are weak and short-range
 \[\Rightarrow \] tight binding implies surface complementarity

- Most molecules are flexible:
 - bond lengths > bond angles > torsion angles / ring conformations
 - macro molecules are restricted in conformational space in a complicated way
More basic principles...

- The binding affinity is the energetic difference to the uncomplexed state:
 - the surrounding medium (water in most cases) plays an important role
 - entropy can have a significant impact to the binding energy
- The binding affinity describes an ensemble of complex structures, not a single one
 - tight binders often have a dominating binding mode ...
 - ... and weak binders?
Energetic Contributions

- weak short-range interactions imply complementarity
- ligand (and protein) are conformationally flexible
- energy estimation is difficult (solvent, electrostatics, entropic effects, etc.)

ligand orientation

bound water

ligand and protein in solution

protein conformational change

protein-ligand complex in solution
Binding affinities

Free Energy of Binding

$$\Delta G = \Delta H - T \Delta S$$

Equilibrium Constant

$$K_i = \frac{[P][L]}{[PL]}$$

~ 6 kJ/mol

$$\cong 1 \text{ order in } K_i$$

"1 - 2 hydrogen bonds"

$$\Delta G = -RT \ln K_i$$

$T = 37°C$
Applications

- Estimating the binding affinity
 - Searching for lead structures for protein targets
 - Comparing a set of inhibitors
 - Estimating the influence of modifications in lead structures
 - De Novo Ligand Design
 - Design of targeted combinatorial libraries

- Predicting the molecule complex
 - Understanding the binding mode / principle
 - Optimizing lead structures
Scoring functions

- **Input:** 3D structure of a protein-ligand complex
- **Output:** estimated binding energy ΔG (freie Enthalpie)
- **Comments:**
 - measured ΔG describes energetic difference between bound and unbound state based on a structure ensemble.
 - Assumption: measured ΔG is dominated by a single structure of minimal energy
 - $\Delta G = \Delta H - T \Delta S$ \(\Delta H\): enthalpic contributions, \(\Delta S\): entropic contr.
 - ΔS is very difficult to approximate!
 - more about energy: Atkins, (Kurzlehrbuch) Physikalische Chemie, Spektrum Akademischer Verlag, 1992
Scoring functions

- Force field:
 - describes only enthalpic contributions ΔH, no estimate for ΔG
 - conformation terms (bond lengths and angles) have a steep rise (sometimes not used in docking calculations)
 - time consuming calculations (electrostatics)

- Potentials of mean force / Knowledge-based scoring
 - Analysis of known low-energy complexes: frequent occurrence \rightarrow energetically favorable
 - Pair potentials: $f(a,b,d) =$ relative frequency of observation atom of type a and atom of type b occur with distance d in the database
 - Conversion into an energy term $g_{ab}(d)$ (inverse Boltzmann law)

 total energy:

 $$ E(R,L) = \sum_{R \in R, L \in L} g_{a(r)a(l)}(d(r,l)) $$

 $d(r,l) :$ distance between r and l
 $a(r) :$ atom type of r
Scoring functions

- **Empirical scoring functions**
 - calibration of microscopic observations with measured macroscopic ΔG values
 - data: set of protein-ligand complexes with known 3D structure and binding affinity ΔG

- **Example: Böhm-Function**

- **Scoring function:**

 $\Delta G = \Delta G_0 + \Delta G_{rot} N_{rot} + \Delta G_{hb} \sum_{\text{neutral H–bonds}} f(\Delta R) f(\Delta\alpha) +$

 $\Delta G_{io} \sum_{\text{ionic interactions}} f(\Delta R) f(\Delta\alpha) + \Delta G_{lipo} |A_{lipo}|$
Scoring functions

- Contributions:
 - ΔG_0: Lost of transformation entropy (?)
 - ΔG_{rot}: Lost of conformational degrees of freedom (ligand entropy)
 - $\Delta G_{\text{hb}} / \Delta G_{\text{io}}$: hydrogen bonds (neutral / charged)
 - ΔG_{lipo}: lipophilic contact surface area

- The function f penalizes deviations from the ideal interaction geometry:

- ΔG values are determined by regression
Rigid-body protein-ligand docking

- **Main assumptions:**
 - protein is considered as rigid
 - ligand is considered as rigid

- **Applications:**
 - docking of small or very rigid molecules
 - docking of fragments (flexible docking, de novo design, combinatorial library design)
 - docking of multi-conformer databases

- **History:**
 - 1982: DOCK
DOCK

- Basic Idea: represent active site by set of spheres, perform sphere matching
- Algorithm 1: SPHGEN
 - calculate the molecular surface
 - generate spheres covering the active site
 - cluster spheres, remove
 - very similar ones
 - radius too large
 - select clusters defining the active site
 - color spheres by properties
Algorithm 2: MATCH (calculate a matching between ligand atoms L and protein spheres K)

- two matches \((l_1, k_1), (l_2, k_2)\) are \textit{distance-compatible} if

\[
| d(l_1, l_2) - d(k_1, k_2) | \leq \varepsilon
\]

- search for matchings \(M=\{(l_i, k_i)\}\) with

\[
\max_{i,j} | d(l_1, l_2) - d(k_1, k_2) | \leq \varepsilon
\]

- Matching-Graph: nodes \(L \times K\), edges between distance-compatible nodes

- Matchings are cliques in the matching graph
 \(\text{ (cliques = completely connected subgraphs)}\)
DOCK

- **Outline of MATCH:**
 - enumeration of all matchings of size 4
 - orientation of molecule with RMSD fit routine
 - filtering of orientations: protein-ligand overlap, stereo chemistry,...
 - extension of matching
 - optimizing the orientation (all matches fit)
 - scoring and selection

- **Extensions of DOCK:**
 - several scoring schemes
 - ligand flexibility (fragment joining and incremental construction)
 - chemical properties in matching phase
Algorithm: Superposition of point sets

- Problem: given two vector sets $X=\{x_1, x_2, \ldots, x_n\}$, $Y=\{y_1, y_2, \ldots, y_n\}$, calculate transformation (t, Ω) minimizing

$$\text{RMSD}_{X,Y}(\Omega, t) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \Omega y_i - t)^2}$$

- see lecture 12.12 (protein structure alignment)
CLIX

- based on interaction maps calculated with GRID
- Algorithm:
 - identification of *interaction target points* in the maps
 - enumeration of all pairs of distance-compatible matches
 - superposition of two matches groups, sampling of rotation around common axis:
 - searching for additional matches
 - overlap test, scoring
Geometric hashing

- Key features
 - method from pattern recognition applied to docking
 - based on the dock sphere representation
 - allows direct application to database search
- Constructing the hash table for ligand atom triplets (a,b,c):
 - entries have address based on atom-atom distances
 - information stored: ligand id, basis (a,b)
- Basic search algorithm:
 - search for matching (two spheres, basis)
 allowing large number of third atom matches
 - extension and evaluation of matches
Geometric hashing

- Search for *seed-matchings*: (voting scheme)
- ∀ pairs of spheres (A,B) // search for matching bases
 - ∀ spheres C: // sphere who gives the vote
 - ∀ entries (ligand, basis) from hash table with matching distances:
 - increase vote for (ligand, basis)
 - insert (C, c) into matchlist of (ligand, basis)
 - ∀ (ligand, basis) with > T votes:
 - check all pairwise distances
 - enter into seed matching list
- Method in pattern recognition:
 - basis is d-dimensional and defines a coordinate reference frame
 - here:
 - due to complexity, basis is only 2-dimensional
 - => matches spheres/atoms may not be superimposable
Pose clustering

- Method from pattern recognition applied to ligand orientation based on physico-chemical interactions

Interaction model:
- Compatible interaction types
- Interaction center of first group lies approximately on interaction surface of second group ...
- ... and vice versa
Pose clustering

- Interaction surfaces are approximated by discrete points:
Pose clustering

Searching for compatible triangles

Clustering of transformations
Pose clustering

- **Preprocessing:** construct hash table for all interaction type pairs a,b:
 - store all pairs of interaction points p,q with address d(p,q)
 - chain lists twice, sorted by point id of p and q

- **Search of initial ligand orientations:**
 - ∀ triplets (a,b,c) of ligand interaction centers:
 - generate a list of all type- and distance-compatible pairs of interaction points for (a,b) and (a,c)
 - construct all distance-compatible triangles (p,q,r) by list merging
 - ∀ triangles (p,q,r): generate ligand transformation, overlap test

- **Cluster orientations by pairwise RMSD**

- ∀ remaining ligand orientations:
 - extend matching, overlap test, scoring
Flexible protein-ligand docking

Main assumptions (not valid for simulations)
- ligand flexibility is limited to torsion angles (+ ring conformations)
- protein is considered as (nearly) rigid
- discrete models for conformations and interactions
- “binding-pathway” is not considered

Application
- Analyzing complexes, searching for possible binding modes
- Virtual screening of small molecule databases

History
- Simul. '72
- DesJarlais '86
- AutoDock '90
- Ludi '92
- GOLD '94
- FlexX '95
- DOCK 4.0 '96
- Hhead '98
Docking by simulation

Method:
- generate (random) start orientations
- MD simulation / energy minimization for all start orientations

Pros/Cons:
- can handle protein flexibility to an arbitrary extend
- very time consuming
- more a local minimization (large structural changes are difficult)

Applications:
Hybrid methods

- **Method:**
 - use fast algorithms for placement, MD for refinement

- **Applications:**

- **Wang’s procedure:**
 - generate low energy conformations
 - rigid-body docking (soft van der Waals potentials)
 - minimization in the active site (amber force field, rigid protein)
 - torsion angle refinement routine (scanning alternative torsions)
 - simulated annealing (minimization, all degrees of freedom)
Simulated annealing: AutoDOCK

- Simulated annealing:
 - random change in configuration is excepted with probability

\[P(\Delta E) = e^{-\frac{\Delta E}{k_B T}} \]

- \(\Delta E \) : energy difference of change
- \(k_B \) : Boltzmann’s constant
- \(T \) : user defined temperature

- cooling schedule reduces \(T \) over time (for example \(T \leftarrow cT \)) makes energetically unfavorable moves more unlikely

- Application specific:
 - move: small random displacement of all degrees of freedom
 - calculation of \(E \): affinity potentials as in GRID
Place & join algorithms

Algorithm:

- cut the ligand into few fragments (one overlapping atom (linker))
- place all fragments with the DOCK algorithm
- for a specific sequence of fragments:
 - join two fragments in all placement combinations with close location of the linker atom
- clustering and energy minimization (AMBER force field)
Place & join algorithms

- Sandak et al., CABIOS Vol. 11 (1995), pp. 87
- Hinge Bending: extending geometric hashing
 - Hinge: Ligand with two adjacent, flexible bonds or protein domain movement
 - Hash table for ligand data set:
 - store ligand fragment, hinge location
 - Matching phase: \(\forall \) receptor sphere triplets:
 - search for ligand atom triplets in hash table
 - perform a voting for a hinge location
 - Join phase: \(\forall \) hinges with high votes
 - combine collision free placements of fragments
 - scoring and selection
Incremental construction algorithms

- **Overall strategy:**
 - divide the molecule into fragments
 - place one (several) fragment(s) into the active disregarding the rest of the molecule
 - add remaining fragments incrementally:
 - explore conformation space, clash test
 - search for new interactions, scoring
 - select new set of extended placements

- **Application to the docking problem:**
 - Welch et al., Chem. & Biol., Vol. 3 (1996), pp 449
Incremental construction algorithms

- Search Strategies:
 - **GREEDY**: after adding a fragment, select the high scoring ones and reject the rest (GROW, FlexX, Hammerhead)
 - scales linear with the number of fragments
 - optimal solution may be sub-optimal during build-up (the larger the considered set and the lower the number of fragments, the lower is the risk of missing the optimal placement)
 - **BACKTRACKING**: performs a recursive (depth first) search through the whole configuration tree (Leach)
 - scales exponentially with the number of fragments
 - no risk of losing the optimal solution due to tree pruning

- Additional steps:
 - Score estimation
 - Placement optimization
 - Solution clustering
Genetic algorithms: GOLD and others

Genetic Algorithms:
- general purpose discrete optimization algorithm
- mimics the process of evolution

The overall model:
- possible solution (configuration) individual
- its representation chromosome
- object function fitness of individual
- modifying solutions (moves) genetic operators (crossover, mutation)

Applications to the docking problem:
GOLD

- Molecule representation (N rotatable bonds)
 - conformation string (N bytes), one byte each coding a torsion angle
 - a matching string (integer), defines mapping between hydrogen bond donors/acceptors: \(M(k)=l \) if k-th interaction group of ligand forms interaction with l-th group of the protein

- Fitness evaluation of individual with chromosome c:
 - build conformation according to c
 - superimpose matched interacting groups
 - calculate docking score: \(-E_{\text{hydrogen bond}} - (E_{\text{internal}} + E_{\text{complex}})\)
GOLD

- Population:
 - 5 sub-populations of 100 individuals each
 - about 20-50 runs, each up to 100000 genetic operations

- Genetic Operators:
 - crossover: two-point crossover between two parent individuals
 - mutation: one-point mutation
 - migration: one individual moves between sub-populations

- operators are randomly selected
Concluding remarks

- **Docking performance**
 - Correct structure can be predicted in about 70% of the test cases
 - Prediction of binding affinity is very difficult:
 1. Ranking protein-ligand complex geometries → good, not perfect
 2. Ranking different ligands with respect to binding → weak correlations
 3. Free energy estimation of protein-ligand complexes → more or less unsolved

- **Challenges**
 - Handling protein flexibility
 - Improving reliability of structure and affinity prediction